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1. Magnetic shear and Quasi-modes 

There are two issues in Geometry: shear, which includes velocity shear and magnetic 

shear, and toroidicity. The study on magnetic shear is relatively older, while people 

started realizing the importance of velocity shear to magnetic confinement fusion more 

recently. Toroidicity means ballooning. In lecture 15, ballooning will be briefly 

introduced in a more physical way than ballooning mode representation. 

 

1.1. Revisiting magnetic shear 

In magnetic shears, the safety factor 𝑞, which is the pitch of the field lines, varies with 

radius 𝑟. If we expand the gradient operator along the field lines near a resonant surface, 

we can get 

∇∥=
𝜕

𝜕𝑧
+

𝑟𝑠
𝑅𝑞(𝑟)

𝜕

𝑟𝑠𝜕𝜃
=
𝜕

𝜕𝑧
+ (

𝑟𝑠
𝑅𝑞(𝑟𝑠)

+
𝑥

𝐿𝑠
)
𝜕

𝜕𝑦
, (1 − 1) 

where 1/𝐿𝑠 = −�̂�/𝑅𝑞, 𝑑𝑦 = 𝑟𝑠𝑑𝜃. 

In lecture 14, we constructed shearing coordinates for velocity shear. The point of 

shearing coordinates is transforming the coordinates into a comoving frame in which 

shear flow is stationary. By doing this, the total time evolution 𝑑/𝑑𝑡 goes to a partial 

time derivative 𝜕/𝜕𝑡 with respect to time. We can do the same thing for magnetic shear. 

Now replacing time 𝑡 by distance 𝑧, and 𝑣𝑦
′  by 1/𝐿𝑠, we obtain 

{

𝑘𝑥 → 𝑘𝑥
′ − 𝑘𝑦

′ 𝑧′/𝐿𝑠
𝑘𝑦 → 𝑘𝑦

′

𝑘𝑧 → 𝑘𝑧
′ − 𝑘𝑦

′ 𝑥′/𝐿𝑠

. (1 − 2) 

N.B. here, 𝑧 is the distance along the field line. But 𝑧 is no longer periodic since most 

of the magnetic surfaces are irrational. Field lines on irrational surfaces extend to 

infinity, and fill the whole surface. Then, according to the Eikonal equation, we have 
𝑑𝑘𝑥
𝑑𝑧

= −
𝑘𝑦

𝐿𝑠
, (1 − 3) 

which is the counterpart of Eikonal equation 𝑑𝑘𝑥/𝑑𝑡 = −𝑘𝑦𝑣𝑦
′  in velocity shear. In 

lecture 14, we can use Eq (1-3) to derive the correlation length along stochastic 

magnetic field, which satisfies 
1

𝑙∥𝑐
~(𝑘𝑦

2𝐷/3𝐿𝑠
2)
1/3
, (1 − 4) 

where 𝐷 is something like Rechester and Rosenbluth diffusivity. Eq (1-2) also tells us 

that 𝑑𝑦′/𝑑𝑧′ = 𝑥′/𝐿𝑠, which means the mode/cell must twist (just like eddy tilting). 

And twists are different at different radii. 

In addition, in terms of velocity shear, if we add a mesoscopically fluctuating shear flow, 

which refers to something like zonal flow, to a mean shear flow, then we can get a 

Langevin equation 



𝑑𝑘𝑥
𝑑𝑡

= −
𝜕

𝜕𝑥
(𝑘𝑥⟨𝑣𝑦⟩ + 𝑘𝑦�̃�𝑦). (1 − 5) 

Eq (1-5) means 𝑘𝑥
2 will diffuse in the 𝑘-space and its diffusivity is 

𝐷𝒌 =∑𝑞2𝑘𝑦
2|�̃�𝑦𝑞|

2
𝜏𝑐𝒌,𝑞

𝑞

. (1 − 6) 

This is effectively a kind of stochastic shearing effect. Naturally, we can generalize this 

result to magnetic shear. We add a random component called zonal field to the RHS of 

Eq (1-3), then get 

𝑑𝑘𝑥
𝑑𝑧

= −
𝑘𝑦

𝐿𝑠
−
𝜕

𝜕𝑥
(𝑘𝑦

�̃�𝑦

𝐵0
) , (1 − 7) 

which brings us to the same thing as Eq (1-5). Similarly, this will introduce a diffusion 

of 𝑘𝑥
2 and the diffusivity is 

𝐷𝒌 =∑𝑞2𝑘𝑦
2 |
�̃�𝑦𝑞

𝐵0
|

2

𝑙𝑐𝒌,𝑞
𝑞

(1 − 8) 

So how do we get the zonal field? Recall that we get zonal flow by considering the 

Reynolds stress, in other words, the flux of polarization charge. As a reminder, we have  

𝜕𝑡⟨∇𝑟
2𝜙⟩ + 𝜕𝑟⟨�̃�𝑟∇⊥

2 �̃�⟩ = 𝜇∇𝑟
2⟨∇𝑟

2𝜙⟩, 

where ⟨�̃�𝑟∇⊥
2 �̃�⟩ = 𝜕𝑟⟨�̃�𝑟�̃�𝜃⟩  (azimuthal symmetry is utilized here). So in the same 

spirit, we can get zonal field by looking at the Ohm’s law. More specifically, we have 

𝜕𝑡⟨𝐴⟩ = −𝜕𝑟[⟨�̃�𝑟𝐴∥⟩ + ⟨�̃�𝑑𝐴∥⟩] (1 − 9) 

After relating 𝐴∥ to �̃�𝑟 through quasi-linear theory and taking the derivative of Eq (1-

9), we obtain an equation for the zonal field. 

 

1.2. Resistive interchange mode with magnetic shear 

Above discussion brings us to resistive interchange mode. When there is no magnetic 

shear or resistivity, 𝑘∥ = 0. Interchange mode is also called flute instability because in 

cylindrical configuration the isopycnic surface looks like the rippling surface of an 

ancient Greek flute column, as shown in Fig 1. 

When there is shear, interchange will be stabilized as 𝑘∥ = 𝑘𝑦𝑥/𝐿𝑠  near resonance 

surfaces. This comes from the fact that 𝐸∥ = 0. Neutrality condition, Ohm’s law of 

ideal MHD and pressure equation tell us 

{
 
 

 
 ∇∥𝐽∥ + ∇⊥ ⋅ 𝑱⊥ = ∇∥𝐽∥ − 𝜕𝑡∇⊥

2 �̃� + 𝜅𝜕𝑦�̃�

𝐸∥ = −𝜕𝑡�̃�∥ − ∇∥�̃� = 0

𝐽∥ = ∇⊥
2𝐴∥

𝜕𝑡𝑝 + �̃�𝑟𝜕𝑟⟨𝑝⟩ = 0

. (1 − 10) 

Then by combining these equations, we have 

𝛾2∇⊥
2 �̃� = −𝑘∥∇⊥

2𝑘∥�̃� − 𝜅𝑘𝑦
2�̃�𝜕𝑟⟨𝑝⟩, (1 − 11) 

Fig 1 Flute instability & ancient Greek flute column 



𝛾2 =
−∫(∇⊥𝑘∥�̃�)

2
𝑑3𝑟 + ∫ 𝜅𝑘𝑦

2 𝜕𝑟⟨𝑝⟩|�̃�|
2
𝑑3𝑟

∫(∇⊥�̃�)
2
𝑑3𝑟

. (1 − 12) 

So a non-zero 𝑘∥ can stabilize the system.  

Then, if we introduce resistivity, field and fluid will be decoupled. In electrostatic limit 

(𝜕𝑡𝐴∥ + ∇∥�̂� = 𝜂𝐽), the vorticity equation now is 

∇⊥
2 �̃� +

𝑣𝐴
2

𝛾𝜂
∇∥
2�̃� +

𝑔

|𝐿𝜌|𝛾2
𝑘𝑦
2�̃� = 0. (1 − 13) 

Since 𝑘∥ = 𝑘𝑦𝑥/𝐿𝑠, Eq (1-13) looks like a quantum harmonic oscillator. The scaling 

of the growth rate is 

𝛾~O(𝜂1/3)~O(1/𝑠1/3), (1 − 14) 

as 1/𝑠 is the Lundquist number and it is small. 

By the way, the spatial width of resistive interchange 𝑤 is proportional to 𝑎/𝑠1/3, and 

thus is small, too. This is because magnetic shear forces the mode to stick near the 

resonant surface. 

 

1.3. Roberts and Taylor: twisted slicing modes 

Resistive interchange mode is first studied by Furth, Killeen, and Rosenbluth. The G-

modes they found are normal modes in which the effect of resistivity is concentrated in 

a thin region near resonant surfaces where 𝒌 ⋅ 𝑩 = 0. This thin region is similar to the 

boundary layer in hydrodynamics. But Roberts and Taylor adopted a different 

perspective, which leads to an alternative class of unstable modes in which the influence 

of resistivity is not localized. Roberts and Taylor approached the final model, which is 

a plasma slab of infinite extent in the 𝑧 direction with finite resistivity and finite shear, 

through a series of simpler but related problems: 1, interchange of ideal plasma in a 

sheared magnetic field with resistively coated end plates (localized resistivity → no 

line-tying effect); 2, resistive interchange in a uniform magnetic field with perfectly 

conducting end plates; 3, resistive interchange in a sheared magnetic field without line-

tying effect. 

 

1.3.1. The gravitational model 

The full set of equations of this model is 

{
  
 

  
 𝜌0

𝜕𝒗

𝜕𝑡
= −∇𝑝 +

1

4𝜋
(∇ × 𝑩) × 𝑩𝟎 +

1

4𝜋
(∇ × 𝑩𝟎) × 𝑩 + 𝜌𝒈

𝜕𝑩

𝜕𝑡
= ∇ × (𝒗 × 𝑩𝟎) +

𝜂

4𝜋
∇2𝑩 = (𝑩𝟎 ⋅ ∇)𝒗 − (𝒗 ⋅ ∇)𝑩𝟎 +

𝜂

4𝜋
∇2𝑩

𝜕𝜌

𝜕𝑡
= −(𝒗 ⋅ ∇)𝜌0 = −𝑣𝑥𝛼𝜌0

∇ ⋅ 𝑩 = 0         ∇ ⋅ 𝒗 = 0

, (1 − 15) 

where 𝑩𝟎 = (0, 𝑠𝑥𝐵0, 𝐵0) (as long as there is magnetic shear), 𝒈 = −𝑔�̂�. The fluid 

is contained between perfectly conducting rigid walls at 𝑥 = ±𝐻, where the boundary 

conditions for perturbed variables are 𝑣𝑥 = 𝐵𝑥 = 𝐸𝑥 = 𝐸𝑦 = 0. The shear is weak, i.e., 

𝑠𝐻 ≪ 1.  

 

1.3.2. Ideal interchange in a sheared magnetic field without line-tying effect 

In this section, plasm is assumed to be ideal and confined by two perfectly conducting 

plane coated with a thin perfectly insulating layer at 𝑧 = ±𝐿. At these two plates, the 

boundary conditions are 𝐵𝑧 = 𝑣𝑧 = (∇ × 𝑩)𝑧 = 0.  

As a preliminary, consider a system without shear. If we restrict our focus on modes 



with 𝑘𝑧 = 0, then Eq (1-15) show that 𝑩 = 0 and 𝑣𝑧 = 0.  

By taking the curl of the momentum equation, we get 

 𝜌0
𝜕∇ × 𝒗

𝜕𝑡
=

1

4𝜋
[(𝑩𝟎 ⋅ ∇)∇ × 𝑩 − (∇ × 𝑩𝟏) ⋅ ∇𝑩𝟎 − (∇ × 𝑩𝟎) ⋅ ∇𝑩] + ∇𝜌 × 𝒈

(4 − 16)  

The curl of Eq (1-16) gives us 

−𝜌0
𝜕

𝜕𝑡
∇2𝒗 = −

1

4𝜋
(𝑩𝟎 ⋅ ∇)∇

2𝑩− (
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)𝜌𝒈. (1 − 17) 

Utilizing the continuity equation and Ohm’s law, we have 

{
 

 𝜌 = −
𝑣𝑥𝛼𝜌0
𝑝

𝐵𝑥 =
(𝑩𝟎 ⋅ ∇)𝑣𝑥

𝑝

, (1 − 18) 

where we have assumed a time dependence exp(𝑝𝑡). 
Combining Eq (1-18) with Eq (1-17), we get 

−𝜌0𝑝∇
2𝑣𝑥 = −

1

4𝜋𝑝
(𝑩𝟎 ⋅ ∇)∇

2(𝑩𝟎 ⋅ ∇)𝑣𝑥 − (
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)
𝑣𝑥𝛼𝜌0
𝑝

𝑔 (1 − 19) 

Because 𝑠 = 0, 𝑘𝑧 = 0, (𝑩𝟎 ⋅ ∇)𝑣𝑥 = 0 and 𝜕𝑧
2𝑣𝑥 = 0, then we can obtain  

𝑝 = (𝛼𝑔)1/2|𝑘𝑦|/(𝑘𝑥
2 + 𝑘𝑦

2). (1 − 20) 

What if the magnetic field is sheared and 𝑘𝑧 ≠ 0? We can rewrite Eq (1-19) as 

𝜌0𝑝
2∇2𝑣𝑥 =

𝐵0
2

4𝜋
(
𝜕
𝜕𝑧
+ 𝑠𝑥

𝜕
𝜕𝑦
)∇2 (

𝜕
𝜕𝑧
+ 𝑠𝑥

𝜕
𝜕𝑦
) 𝑣𝑥

+(
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
) 𝑣𝑥

. (1 − 21) 

Eq (1-21) can be solved in the limit 𝐵0 → ∞ by expanding 𝑣𝑥 in powers of 1/𝐵0
2. 

That is we write 𝑣𝑥 = 𝑢0 + 𝑢1 +⋯. Then 

𝐷0𝑢0 = 0, 𝐷1𝑢1 = 𝐷1𝑢0, …       , (1 − 22) 
where 

𝐷0 = 𝐵0
2 (
𝜕

𝜕𝑧
+ 𝑠𝑥

𝜕

𝜕𝑦
)∇2 (

𝜕

𝜕𝑧
+ 𝑠𝑥

𝜕

𝜕𝑦
) , (1 − 23) 

and 

𝐷1 = 𝜌0 [𝑝
2∇2 − 𝛼𝑔(

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)] , (1 − 24) 

are self-adjoint operators. Then, by transforming the coordinates into twisted coordinate 

system, i.e., 𝜉 = 𝑥, 𝜒 = 𝑦 − 𝑠𝑥𝑧, 𝜁 = 𝑧, according to Eq (1-2), we have 

(
𝜕

𝜕𝑧
+ 𝑠𝑥

𝜕

𝜕𝑦
) =

𝜕

𝜕𝜁
, (1 − 25) 

and 𝜉 , 𝜒  are constant along field lines. Therefore, any function 𝑓(𝜉, 𝜒)  which is 

independent of 𝜁  is then a solution of 𝐷0𝑢0 = 0  as (𝜕𝑧 + 𝑠𝑥𝜕𝑦)ℎ(𝜉) = 0  and 

(𝜕𝑧 + 𝑠𝑥𝜕𝑦)𝑗(𝜒) = 0 . However, 𝐷0𝑢1 = 𝐷1𝑢0 , can possess a solution 𝑢1  only if 

𝐷1𝑢0 is orthogonal to all solutions of 𝐷0𝑢0 = 0. Because 

∫ 𝑣0𝐷0𝑢1𝑑𝜁
𝐿

−𝐿

= ∫ 𝑣0𝐷1𝑢0𝑑𝜁
𝐿

−𝐿

= ∫ 𝐷0𝑣0𝑢1𝑑𝜁
𝐿

−𝐿

= 0. (1 − 26) 

In Eq (1-26) we utilize the fact that 𝐷0 and 𝐷1 are self-adjoint. Eq (1-26) imposes a 

further constraint on 𝑢0 which must now satisfy equations 



𝐷0𝑢0 = 0,∫ 𝐷1𝑢0𝑑𝜁 = 0
𝐿

𝐿

. (1 − 27) 

Solutions of Eq (1-27) exist of the form 𝑢0 = 𝑢0(𝜉) exp 𝑖𝑘𝜒 provided 

𝑑2𝑢0
𝑑𝜉2

+ (𝐴𝜉2 + 𝐵)𝑢0 = 0, (1 − 28) 

where 

𝐴 = 𝑘2𝑠2(𝛼𝑔/𝑝2 − 1), 𝐵 = 𝑘2(𝛼𝑔/𝑝2 − 1 − 1/3𝑠2𝐿2). (1 − 29) 
Because 𝑢0 = 0 at 𝑥 = ±𝐻, 𝑢0

−1𝑑2𝑢0/𝑑𝜉
2 must be negative at some places, which 

means 𝑠2(𝛼𝑔/𝑝2 − 1)𝜉2 + (𝛼𝑔/𝑝2 − 1 − 1/3𝑠2𝐿2) > 0 at some places. Therefore 

𝛼𝑔/𝑝2 − 1 >
1

3
𝑠2𝐿2/(1 + 𝑠2𝜉2) ≥

1

3
𝑠2𝐿2/(1 + 𝑠2𝐻2). (1 − 30) 

We can conclude that 𝐴 > 0, which allow us to rewrite (1-28) as Weber’s equation 

𝑑2𝑢0
𝑑𝑤2

+ (
1

4
𝑤2 − 𝑎) 𝑢0 = 0. (1 − 31) 

For any finite value of 𝑠, 𝑘, 𝐻, 𝐿, it is possible to find a real positive value of 𝑝2/𝛼𝑔 

such that the solution of Eq (1-31) satisfies the boundary conditions. In other words, 

the system is always unstable for 𝛼𝑔 > 0. Therefore, the conclusion is in a system of 

finite length with perfect conductivity but in which lines of force are not tied at the ends, 

there are instabilities even when the shear is sufficient to stabilize the corresponding 

infinitely long system. Magnetic shear simply twisted flux tubes to conform to the field 

lines. The growth rate is lowered because part of the free energy is converted to 

rotational kinetic energy, but the stability criterion is unaltered. 

 

1.3.3. Resistive interchange in a uniform magnetic field 

In this case, at 𝑧 = ±𝐿, end plates are perfectly conductive, which means there is line-

tying effect. The corresponding boundary condition is 𝐵𝑧 = 𝑣𝑥 = 𝑣𝑦 = 0 and 𝑣𝑧 is 

small at 𝑧 = ±𝐿 . Assuming all the perturbed quantities have the form exp[𝑝𝑡 +

𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧)], and setting 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2, �̃�2 = 𝑘𝑦

2 + 𝑘𝑧
2, Eq (1-17) and 

Ohm’s law yield 

𝑝3 +
𝜂𝑘2𝑝2

4𝜋
+ (

𝐵0
2𝑘𝑧

2

4𝜋𝜌0
− 𝛼𝑔

�̃�2

𝑘2
)𝑝 −

𝛼𝑔𝜂�̃�2

4𝜋
= 0. (1 − 32) 

If 𝛽 ≪ 1 and 𝑝 < 𝑐𝐴𝑘𝑧, the approximate dispersion relation is 

𝑝2 +
𝐵0
2𝑘𝑧

2

4𝜋𝜌0
𝑝 −

𝛼𝑔𝜂�̃�2

4𝜋
= 0. (1 − 33) 

When 𝑝 is small, one root of Eq (1-33) is 

𝑝~(𝛼𝑔𝜌0/𝐵0
2𝑘𝑧

2)𝜂�̃�2~(𝛼𝑔𝜌0𝐿
2/𝐵0

2)𝜂�̃�2. (1 − 34) 
We can assume 𝑘𝑥, 𝑘𝑧 ≪ 𝑘𝑦, then 𝑝 is almost independent of 𝑘𝑥 and proportional to 

𝑘𝑦
2. The physical picture is that alternate thin vertical layers, which are parallel to the 

magnetic field, are moving up and down, as shown in Fig 2 (vertical layers are marked 

in green and yellow, green means moving up and yellow means moving down). 

The reason why fluids can move across the field is the diffusion of field line as a result 

of resistivity. This mechanism was first proposed in Furth, Killeen and Rosenbluth. But 

one may notice that here 𝑝  is proportional to 𝜂  instead of 𝜂1/3 . This result is 

inconsistent with the growth rate of G-modes. That’s because in this model the length 

of the mode is restricted by the distance between those two end plates at 𝑧 = ±𝐿. As 

will be seen in the next section, in an infinitely extended system, 𝐿 is proportional to 

𝜂−1/3. This eliminates the contradiction. 



 

1.3.4. Twisted slicing modes 

Finally, we examine a plasma slab of infinite extent in the 𝑧  direction, with finite 

resistivity and finite shear.  

Since the presence of shear will not increase the growth rate, 𝑝 ≪ 𝜂𝑘2, so 𝜕𝑩/𝜕𝑡 can 

be omitted in Ohm’s law. In the twisted coordinate,𝑣𝑥 = 𝑣(𝜁) exp(𝑖𝑘𝑥𝜉 + 𝑖𝑘𝑦𝜒), and 

Eq (1-21) can be rewritten as 

(1 + 𝜖2𝑞)
1
𝑘𝑦2
∂2𝑣
∂𝜁2

− 2𝜖2𝑞𝑖𝑠𝜉
1
𝑘𝑢

𝜕𝑣
𝜕𝜁

−𝜖2 [𝑞(1 + 𝑠2𝜉2)+
𝑝2

𝛼𝑔 𝑠
2𝜁2 −

𝑝2

𝛼𝑔
(
𝑘𝑥2

𝑘𝑦2
− 2𝑠𝜁

𝑘𝑧
𝑘𝑦
)] 𝑣 = 0

, (1 − 35) 

where 𝜖2 = 𝛼𝑔𝜌0𝜂/𝑝𝐵0
2, 𝑞 = 𝑝2/𝛼𝑔 − 1. In the limit 1/𝜖 = 𝑘𝑦𝐿 ≫ 1, 𝑘𝑥. 𝑘𝑦 ≪ 1, 

Eq (1-35) reduces to 

𝑑2𝑣

𝑑𝜁2
−
𝑝𝜌0𝜂

𝐵0
2 (𝑠𝑘𝑦)

2
𝜁2𝑣 +

𝑝𝜌0𝜂𝑘𝑦
2

𝐵0
2 (

𝛼𝑔

𝑝2
− 1)𝑣 = 0, (1 − 36) 

which can again be transformed into Weber’s equation 

(
𝑑2

𝑑𝑤2
−
1

4
𝑤2 + 𝑎)𝑣 = 0, (1 − 37) 

where 
1

4
𝑤2 =

𝜁2

2Δ2
, Δ = (

𝐵0

𝑠𝑘𝑦
)

1

2
(

1

𝑝𝜌0𝜂
)

1

4
, 2𝑎 =

(𝑝𝜌0𝜂)
1
2

𝑠𝐵0
𝑘𝑢 (

𝛼𝑔

𝑝2
− 1) . This is like a 

quantum harmonic oscillator, so its solutions are 

𝑣 = 𝑣𝑛(𝜁) = exp(−𝜉
2/2Δ2)𝐻𝑛(𝜁√2/Δ) , (1 − 38) 

where 𝐻𝑛 are Hermite polynomials. And the growth rate is 

𝑝𝑛 = (
𝜂𝑘𝜂

2

4𝜋
)

1
3

(𝛼𝑔)
2
3 (
4𝜋𝜌0

𝐵0
2𝑠2
)

1
3

(2𝑛 + 1)−
2
3, (1 − 39) 

which is the same as that found by Furth, Killeen and Rosenbluth. That’s because now 

the length of the mode is 

Δ𝑛 = (
4𝜋

𝜂𝑘𝑦2
)

1
3 1

(𝛼𝑔)
1
6

(
𝐵𝑛
2

4𝜋𝜌0
)

1
3 1

𝑠
1
3

(2𝑛 + 1)
2
3 ∝ 𝜂−

1
3. (1 − 40) 

As we can see, 𝑘𝑥 doesn’t show up in both Eq (1-39) and Eq (1-40), provided 𝑘𝑥 ≪

Fig 2 motions of alternate thin vertical layers that are parallel to magnetic field 



𝑘𝑦 . Hence, we can replace the 𝑥  dependence of our modes by any arbitrary 

dependence 𝑔(𝑥) so long as 𝑔(𝑥) varies slowly. We thus obtain modes of the form 

𝑣𝑥(𝑥, 𝑦, 𝑧) = 𝑔(𝑥)𝑣𝑛(𝑧) exp[𝑖𝑘𝑦(𝑦 − 𝑠𝑥𝑧)] . (1 − 41) 

This mode is called twisted slicing mode. Since 𝑣𝑥 varies slowly when 𝑦 − 𝑠𝑥𝑧 =
𝑐𝑜𝑛𝑠𝑡, at a specific plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡, the flow pattern is almost constant along the line 

𝑦 − 𝑠𝑥𝑧 = 𝑐𝑜𝑛𝑠𝑡, which means “convective rolls” get twisted as one moves along 𝑧 

axis but at the same time the flow velocity also decays slowly away in 𝑧 because of 

the term 𝑣𝑛(𝑧). See Fig 3, the projection of each convective roll onto the x-y plane is 

exactly 𝑦 = 𝑠𝑧𝑥. 

The length of the mode, i.e., Δ, is set by a compromise between (a) rate of release of 

gravitational potential energy, (b) rate of resistive dissipation, and (c) rate of increase 

of kinetic energy. In order to reduce (b), flux tubes tend to rotate about vertical axis to 

align with the local magnetic field as they move up and down. In order to keep this 

rotational kinetic energy finite, modes must have finite length in 𝑧. They achieve this 

finite length at the expense of some increase in (b). As 𝜂 → 0, Δ → ∞. 

 

1.3.5. Relation between twisted slicing modes and localized G-modes 

As we have fond in Sec 1.3.4., twisted slicing modes have the same growth rate as G-

modes. Therefore, there must exist a correlation between these two modes. Actually, 

twisted slicing modes are just combinations of periodic G-modes at different heights. 

Because the eigen function of G-modes looks like 

𝑣𝑥 = exp(−𝑋
2/2𝛿2)𝐻𝑛(𝑋√2/𝛿) exp(𝑝𝑡 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧) , (1 − 42) 

where 𝑠𝑋𝑘𝑦 = 𝑠𝑥𝑘𝑦 + 𝑘𝑧 . If we integrate it over 𝑘𝑧  (which is equivalent to an 

integration over 𝑥0), then we get 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = exp(𝑖𝑘𝑦𝑧) ∫ 𝑓(𝑘𝑧)𝑑𝑘𝑧 ⋅ exp[𝑖𝑘𝑧𝑧 − (𝑥 − 𝑥0)
2/2𝛿0

2] exp(𝑝𝑡)

= 𝛿√2𝜋𝑔(𝑥) exp [𝑖𝑘𝑦(𝑦 − 𝑠𝑥𝑧) − (𝑠𝑘𝑦𝑧𝛿0)
2
/2 + 𝑝(0) (1 +

2
3
(𝑠𝑥)2) 𝑡]

, (1 − 43) 

which has the form of the twisted slicing mode. 

Of course Eq (1-43) is not an exact normal mode, because it has no precise time 

dependence. Thus it will disperse after a while. According to Eq (1-43), 𝛿𝑝/𝑝 =
2/3(𝑠𝑥)2~10−3 for a stellarator. Because 𝑠𝑥 is small, it will behave like a normal 

mode for a long time. This is why it’s called quasi-mode. Before the quasi-mode finally 

disperses, the system can have already entered non-linear regime, which make quasi-

mode a good approximation of the normal mode. 

Fig 3 twisted slicing mode 



For G-modes, 𝐷~𝑝/𝑘𝑥
2~𝜂 while for quasi-modes 𝐷~𝑝/𝑘𝑥

2~𝜂1/3. We can assume the 

radial correlation length is greatly enhanced, i.e., eddies extend in the 𝑥  direction. 

Therefore, quasi-modes can greatly enhance the plasma loss.  

 

2. Toroidicity and ballooning 

 

2.1. A physical approach: Bloch eigenmode equation 

In section 1.3., we see that 𝜙(𝑧) is not eigenmode but quasi-mode, i.e., wave packet. 

But if we consider poloidal coupling due to toroidicity, wave packets become 

eigenmodes. That is what we call resistive ballooning mode. 

It is worth mentioning that the jargon “ballooning” has double meanings. One meaning 

corresponds to a physical process driven by curvature. Especially it tends to happen in 

the “bad curvature” region. Another meaning is more general. People use this word to 

describe modes/fluctuations where toroidicity matters. 

When there is toroidicity, magnetic drifts enter our story. Recall that the Hasegawa-

Mima equation is 

(𝜕𝑡 −
𝑐

𝐵0
∇𝜙 × �̂� ⋅ ∇) (𝜙 − 𝜌𝑠

2∇⊥
2𝜙) + 𝑣∗

𝜕𝜙

𝜕𝑦
= 0. (2 − 1) 

Traditionally, this equation comes from the linearized continuity equation for ions, 

which is 

𝜕𝑡�̃� + 𝑣�̃�𝜕𝑟𝑛0 + 𝑛0∇ ⋅ �̃� = 0. (2 − 2) 
To couple acoustic wave to drift wave, we need to include �̃�∥ into Eq (2-2). Then this 

leads us to 
𝜕𝑡�̃� + 𝑣�̃�𝜕𝑟𝑛0 + 𝑛0∇ ⋅ �̃� + 𝑛0∇∥�̃�∥ = 0. (2 − 3) 

And the parallel velocity of ions satisfies the equation 
𝑑

𝑑𝑡
𝑚𝑖�̃�∥ = −|𝑒|∇∥�̃�. (2 − 4) 

After linearizing Eq (2-4) and combining it with Eq (2-3), we get the eigenmode 

equation for drift-acoustic waves, which is 

−𝜌𝑠
2
𝜕2

𝜕𝑥2
�̂� + 𝑘𝜃

2𝜌𝑠
2�̃� + (1 −

𝜔∗

𝜔
) �̂� −

𝑘𝜃
2𝑥2

𝐿𝑠2𝜔2
𝑐𝑠
2�̂� = 0 (2 − 5) 

N.B., Eq (2-5) is not a quantum harmonic oscillator, because the factors of 𝜕𝑥
2�̃� and 

𝑥2�̃� have the same sign. It means instead of a nice mode in a potential well, what we 

have is a mode in a potential barrier. This mode will drive outgoing waves, which can 

carry energy. The energy will ultimately be absorbed somewhere. This effect is called 

magnetic shear damping, which is similar to the damping of oscillating charged 

particles through radiation. Eq (2-5) gives us the mode structure for drift-acoustic wave, 

but there will be no instability unless we consider non-adiabatic electrons in sheared 

system. 

Now, instead of the dispersion relation 𝑘⊥
2𝜌𝑠

2 + 1 − 𝜔∗/𝜔 = 0 for pure drift wave, the 

dispersion relation for drift-acoustic wave is 

𝑘⊥
2𝜌𝑠

2 + 1 −
𝜔∗

𝜔
−
𝑘∥
2𝑐𝑠
2

𝜔2
= 0. (2 − 6) 

To take into account the effect of toroidicity, i.e., the curvature of magnetic field, 

besides �̃�∥, we need to include the magnetic drift velocity 𝑣𝐷𝑖 as well. Therefore, Eq 

(2-3) can be rewritten as 
𝜕𝑡�̃� + 𝒗𝑫𝒊 ⋅ ∇�̃� + 𝑣�̃�𝜕𝑟𝑛0 + 𝑛0∇ ⋅ �̃� + 𝑛0∇∥�̃�∥ = 0 (2 − 7)

And the expression for drift frequency 𝜔𝐷𝑖 is 

𝜔𝐷𝑖 = 𝒗𝑫𝒊 ⋅ ∇= 𝑖𝑣𝐷(𝑘𝑦 cos 𝜃 + 𝑘𝑥 sin 𝜃). (2 − 8) 



Obviously, because the drift frequency depends on poloidal angle 𝜃 , it breaks the 

poloidal symmetry and couples poloidal harmonics. By simply replacing 𝜔 by 𝜔 −
𝜔𝐷𝑖 in Eq (2-5), we obtain the eigenmode equation for ballooning mode, which is 

−𝜌𝑠
2
𝜕2

𝜕𝑥2
�̂�𝑚 + 𝑘𝜃

2𝜌𝑠
2�̂�𝑚 + (1 −

𝜔∗

𝜔
) �̃�𝑚 −

𝑘𝜃
2𝑥2

𝐿𝑠2𝜔2
𝑐𝑠
2�̂�𝑚

+T(�̂�𝑚+1 + �̂�𝑚−1) + T
′(�̂�𝑚+1 − �̂�𝑚−1) = 0, (2 − 9)

 

where (�̂�𝑚+1 + �̂�𝑚−1)  and (�̂�𝑚+1 − �̂�𝑚−1)  come from cos 𝜃 �̂�𝑚  and sin 𝜃 �̂�𝑚 , 

and linear coupling operators T and T′ are of order 𝜖T~𝐿𝑛/𝑅. 

Based on Eq (2-9), we can rewrite the eigenmode equation in more compact form as 

𝐿𝑚,𝑛�̂�𝑚,𝑛 + 𝑇𝑚+1,𝑛�̂�𝑚+1,𝑛 + 𝑇𝑚−1,𝑛
′ �̂�𝑚−1,𝑛 = 0. (2 − 10) 

An important fact is that the toroidal mode number 𝑛  remains as a good quantum 

number because toroidal symmetry is not broken. 

Eq (2-10) is equivalent to a tri-diagonal matrix equation 

[
 
 
 
 
 
⋯ ⋯ 0 0 0 0
𝑇𝑚−2 𝐿𝑚−1 𝑇𝑚 0 0 0
0 𝑇𝑚−1 𝐿𝑚 𝑇𝑚+1 0 0
0 0 𝑇𝑚 𝐿𝑚+1 𝑇𝑚+2 0
0 0 0 𝑇𝑚+1 𝐿𝑚+2 𝑇𝑚+3
0 0 0 0 ⋯ ⋯ ]

 
 
 
 
 

[
 
 
 
 
 
⋯

𝜙𝑚−1
𝜙𝑚
𝜙𝑚+1
𝜙𝑚+2
⋯ ]

 
 
 
 
 

= 0. (2 − 11) 

Evidently, this matrix reminds us of the one-dimensional linear harmonic oscillator 

chain (as shown in Fig 4). So the problem reduces to Bloch eigenmode problem and the 

Bloch eigenfunction is a superposition of linearly coupled poloidal harmonics. 

One of the important things in the game of ballooning is that a new scale, the spacing 

between two adjacent poloidal harmonics. It is easy to get this scale. Assume 𝑞(𝑟0) =
𝑚/𝑛, and 𝑞(𝑟0 + Δ) = (𝑚 + 1)/𝑛, after a simple calculation, we have 

Δ =
1

𝑛𝑞′(𝑟0)
=

1

𝑘𝜃 �̂�
. (2 − 12) 

In order for Δ𝑟 to be much smaller than some macroscopic scales such as 𝐿𝑛 and 𝐿𝑝, 

we always require toroidal mode number 𝑛 to be large. If this is the case, we may 

assume there is a translational invariance for two near neighbors, i.e., two adjacent 

poloidal harmonics look the same. Mathematically, this approximate translational 

invariance gives us 

{
�̂�𝑚+1 = �̂�𝑚(𝑥 + Δ)

�̂�𝑚−1 = �̂�𝑚(𝑥 − Δ)
. (2 − 13) 

Substituting this relation into Eq (1-24), we obtain 

𝐿𝑚,𝑛�̂�𝑚,𝑛(𝑥) + 𝑇𝑚+1,𝑛�̂�𝑚,𝑛(𝑥 + Δ) + 𝑇𝑚−1,𝑛
′ �̂�𝑚,𝑛(𝑥 − Δ) = 0. (2 − 14) 

Now the tridiagonal matrix equation is converted to a differential difference equation. 

Fig 4 chain of one-dimensional harmonic oscillators 



By taking the Fourier transform in 𝑥 of Eq (2-14), we can get rid of this spacing shift, 

which leaves us with a phase factor instead. N.B., the Fourier transform variable of 𝑥 

is 𝜂, the distance along field line. That’s because 𝑘∥ is linearly related to 𝑥. So the 

Fourier transform of 𝑥 is indeed equivalent to the Fourier transform of 𝑘∥. By solving 

Eq (2-14) in 𝜂-space, we can determine how mode varies along the field line, which is 

analogous to quaismode. Basically the mode will be big in the bad curvature region and 

small in the good curvature region. Like Bloch envelope, we can further determine the 

radial envelope from envelope boundary condition. 

If Δ is much smaller than (�̂�′/�̂�)
−1

, the characteristic length scale of �̂�, then we can 

expand in Δ . This case is named as “strong ballooning” regime. However, if this 

condition is not true, we can no longer expand in Δ. We must solve the equation by 

using Fourier transform. This regime is called “weak ballooning”, in which the mode 

extends in the ballooning coordinate 𝜂. 

 

2.2. A mathematical approach: Ballooning Mode Representation 

In any axisymmetric toroidal system, the magnetic field can be expressed as 

𝑩 = ∇𝜓 × ∇𝜁 + 𝐼(𝜓)∇𝜁, (2 − 15) 
where 𝜓 = 𝑐𝑜𝑛𝑠𝑡 defines a toroidal magnetic surface and 𝜁 is toroidal angle. So we 

can construct an orthogonal coordinate system (𝜓, 𝜁, 𝜒) where 𝜒 is a poloidal, angle-

like coordinate. In toroidal axisymmetric plasmas, some of the most persistent 

instabilities are those which have short wavelength perpendicular to the magnetic field 

but long wavelength to it, because bending magnetic field costs too much energy. Since 

the toroidal symmetry is still kept when we have toroidicity, the appropriate Eikonal 

form for such oscillations is 

𝜙(𝜓, 𝜒, 𝜁) = 𝐹(𝜓, 𝜒) exp [𝑖𝑛 (𝜁 − ∫ 𝜈𝑑𝜒′
𝜒

)] , (2 − 16) 

where 𝜈 = 𝑑𝜁/𝑑𝜒0, 𝑞 = (2𝜋)
−1 ∮𝜈𝑑𝜒′ and 𝑛 ≫ 1. 

According to the definition of 𝜈, if we move along the field line, 𝑑𝜁 = 𝜈𝑑𝜒, the change 

of phase factor in Eq (2-16) is 0. The small 𝑘∥ are embodied in the slowly varying 

function 𝐹(𝜓, 𝜒). On the contrast, if we move across the field line, since 𝑛 ≫ 1, the 

phase varies quickly.  

However, when there is magnetic shear, this expression is contradictory to the 

requirement of periodicity in the poloidal angle 𝜒  for all values of 𝜓 , without 

abandoning the hypothesis that 𝐹(𝜓, 𝜒) varies slowly. Here I can give a simple proof 

of this statement. If we assume 𝜙(𝜒 = 0) = 𝜙(𝜒 = 2𝜋), then we must have 

𝐹(𝜓, 0) = 𝐹(𝜓, 2𝜋) exp[−𝑖2𝜋𝑛𝑞(𝜓)] . (2 − 17) 
We have already assumed that 𝐹  varies slowly with respect to 𝜓  while 

exp[−𝑖2𝜋𝑛𝑞(𝜓)] is a quickly varying function of 𝜒 as 𝑛 ≫ 1. Therefore, Eq (2-17) 

cannot hold unless we assume 𝐹  also varies quickly, which contradicts the whole 

concept of an eikonal representation. To reconcile periodicity and shear, Connor, Hastie, 

and Taylor constructed the following representation in 1979. 

If �̂�(𝜂, 𝑥) is a solution of a two-dimensional eigenvalue problem 

ℒ(𝜂, 𝑥)�̂�(𝜂, 𝑥) = 𝜆�̂�(𝜂, 𝑥), (2 − 18) 
then its transformation, 𝜑(𝜃, 𝑥), which is defined as 

𝜑(𝜃, 𝑥) =∑𝑒−𝑖𝑚𝜃∫ 𝑒𝑖𝑚𝜂�̂�(𝜂, 𝑥)𝑑𝜂
∞

−∞𝑚

, (2 − 19) 

is also a solution to the same differential equation with the same eigenvalue, i.e., 

ℒ(𝜃, 𝑥)𝜑(𝜃, 𝑥) = 𝜆𝜑(𝜃, 𝑥). (2 − 20) 



N. B., here 𝜑(𝜃, 𝑥) and ℒ are periodic in 𝜃, 0 ≤ 𝜃 ≤ 2𝜋 while �̂� is not periodic 

and is defined in the infinite domain −∞ < 𝜂 < ∞.  

Eq (2-19) is called Ballooning Mode Transformation. This transformation contains 

three successive steps: 

⚫ First, since 𝜑(𝜃, 𝑥) is periodic in 𝜃, we can get its Fourier expansion, which is 

𝑎𝑚 =
1

2𝜋
∮𝑒𝑖𝑚𝜃𝜑(𝜃)𝑑𝜃 . (2 − 21) 

⚫ Second, we can extend the domain of definition of 𝑎𝑚 from integer number to 

real number. For any well-behaved function 𝜑(𝜃), the generalization of 𝑎𝑚 is 

𝑎(𝑠) =
1

𝜋
∑𝑎𝑚

sin[(𝑚 − 𝑠)𝜋]

(𝑚 − 𝑠)
𝑚

. (2 − 22) 

⚫ Finally, by taking the inverse Fourier transformation of 𝑎(𝑠) , we can obtain 

�̂�(𝜂, 𝑥). 
We can prove that if ℒ is a differential operator with periodic coefficients, then 𝜙(𝜃) 
will be a periodic solution of ℒ(𝜕/𝜕𝜃)𝜑(𝜃) = 𝜆𝜑(𝜃)  provided �̂�  is a solution of 

ℒ(𝜕/𝜕𝜂)�̂�(𝜂) = 𝜆�̂�(𝜂) in the infinite domain −∞ < 𝜂 < ∞. Substituting Eq (2-19) 

into Eq (2-20), we get 

(ℒ(𝜕/𝜕𝜃) − 𝜆)𝜑(𝜃) = (ℒ(𝜕/𝜕𝜃) − 𝜆)∑ 𝑒−𝑖𝑚𝜃 ∫ 𝑒𝑖𝑚𝜂�̂�(𝜂)𝑑𝜂
∞

−∞𝑚

= ∑ (−𝑖𝑚 − 𝜆)𝑒−𝑖𝑚𝜃 ∫ 𝑒𝑖𝑚𝜂�̂�(𝜂, 𝑥)𝑑𝜂
∞

−∞𝑚

= ∑ 𝑒−𝑖𝑚𝜃 ∫ (−𝑖𝑚 − 𝜆)𝑒𝑖𝑚𝜂�̂�(𝜂)𝑑𝜂
∞

−∞𝑚

= ∑ 𝑒−𝑖𝑚𝜃 ∫ 𝑒𝑖𝑚𝜂(𝐿(𝜕/𝜕𝜂) − 𝜆)�̂�(𝜂)𝑑𝜂
∞

−∞𝑚 = 0.

(2 − 23)
 

The last step is achieved through partial integration. Clearly, when 𝐿(𝜕/𝜕𝜂)�̂�(𝜂) =
𝜆�̂�(𝜂), ℒ(𝜕/𝜕𝜃)𝜑(𝜃) = 𝜆𝜑(𝜃). Then, we can solve this differential equation by using 

the eikonal form of �̂�(𝜂, 𝑥) without considering the requirement of periodicity. Once 

we get �̂�(𝜂, 𝑥) , we can immediately get 𝜑(𝜃, 𝑥)  through Ballooning Mode 

Transformation. 

Here comes a question, how do we interpret the physical meaning of the coordinate 𝜂? 

𝜂 is extended poloidal coordinate (field line position), more specifically, the distance 

along the field line. Recalling Eq (2-16), because �̂�  is no longer periodic, after 

ignoring the ignorable coordinate 𝜁, the expression for �̂� is 

�̂�(𝜂, 𝑥) = 𝐹(𝑥, 𝜂) exp [−𝑖𝑛∫ 𝜈𝑑𝜂′
𝜒

] . (2 − 24) 

Plugging this expression into Eq (2-19), we obtain 

𝜑(𝜃, 𝑥) =∑𝑒−𝑖𝑚𝜃∫ 𝐹(𝑥, 𝜂) exp [𝑖𝑚𝜂 − 𝑖𝑛∫ 𝜈𝑑𝜂′
𝜂

] 𝑑𝜂
∞

−∞

.

𝑚

(2 − 25) 

As is mentioned above, 𝜈 = 𝑑𝜁/𝑑𝜂 ≈ 𝑞 (here we exclude spherical tokamak), so we 

can rewrite Eq (2-24) as 

𝜑(𝜃, 𝑥) =∑𝑒−𝑖𝑚𝜃∫ 𝐹(𝑥, 𝜂) exp[𝑖(𝑚 − 𝑛𝑞)𝜂] 𝑑𝜂
∞

−∞

.

𝑚

(2 − 26) 

Because (𝑚 − 𝑛𝑞) = 𝑘∥, 𝜂 is reciprocal to 𝑘∥, and thus the physical meaning of 𝜂 

is the distance along field line. 

We can look at the structure of the solution 𝜑(𝜃, 𝑥)  in another way. By assuming 

appropriate convergence properties, we can change the sequence of integral and 

summation in Eq (2-19), and get 



𝜑(𝜃, 𝑥) = ∫ ∑exp[−𝑖𝑚(𝜃 − 𝜂)]�̂�(𝜂, 𝑥)𝑑𝜂

𝑚

∞

−∞

(2 − 27) 

Since ∑ exp(−𝑖𝑚(𝜃 − 𝜂))𝑚 = ∑ 𝛿(𝜃 − 𝜂 − 2𝜋𝑁)𝑁 , we can rewrite Eq (2-24) as 

𝜑(𝜃, 𝑥) =∑�̂�(𝜃 − 2𝜋𝑁, 𝑥)

𝑁

. (2 − 28) 

As the structure of �̂� is given by Eq (2-24), we can see 𝜑 is indeed an infinite sum 

of “quasi-modes” as mentioned in Sec. 1.3. 

 

2.3. Effect of toroidicity on drift wave 

Recalling equation (2-15), the solution is an outgoing wave, and the wavelength 

gradually decreases (as shown in Fig 5). At a point, the wave can resonate with ions 

(𝜔 = 𝑘∥𝑣𝑡ℎ𝑖 ) and then be dissipated. This is similar to the radiative damping of 

oscillating charged particles. 

Then, after including toroidicity and taking the Fourier transform, we get the following 

eigenmode equation 

[
𝑑2

𝑑𝜂2
+ 𝜂𝑠

2Ω2𝑄(Ω, 𝜂)] �̂�(𝜂) = 0, (2 − 29) 

where 𝑄(Ω, 𝜂) = 𝑏𝜃
2(1 + �̂�2𝜂2) + 1 − 1/Ω + (2𝜖𝑛/Ω)(cos 𝜂 + �̂�𝜂 sin 𝜂) , Ω = 𝜔𝑒

∗ , 

𝑏𝜃 = 𝑘𝜃
2𝜌𝑠

2, 𝜖𝑛 = 𝑟𝑛/𝑅, and 𝜂𝑠 = 𝑞𝑏𝜃
1/2
/𝜖𝑛. 

There is no surprise that we still have a potential barrier 𝜂2 in Eq (2-29) because the 

Fig 5 outgoing wave 

Fig 6 modulation of toroidicity on potential structure 



Fourier transform of a Gaussian is a Gaussian. But toroidal-coupling effects introduce 

modulations on the anti-well potential structures (as shown in Fig 6). 

As we can see in Fig 6, the ripples of the potential structure allow some wave energy 

to be trapped, then we can get standing eigenmode, which are toroidicity induced mode. 

N. B., this mode is not ballooning mode because they are not driven by curvature. They 

just indicate us that curvature can allow us to get around radiative damping. In other 

words, the geometry can actually interfere with the process of coupling to Landau 

damping (Chen, Liu, and C. Z. Cheng, The Physics of Fluids 23.11 (1980): 2242-2249.). 

By the way, we can get nearly the same eigenmode equation as Eq (2-29) by using 

ballooning mode representation (e.g., R. J. Hastie, K. W. Hesketh, and J. B. Taylor, 

Nucl. Fusion, 19, 1223 (1979)). So in principle, ballooning mode representation can 

give us the same result as Bloch eigenmode equation. 

In these days, flat 𝑞 regime is one of the important topics in MFE. By controlling the 

current profile, we can make the shear very weak. This experiment has been done on 

many famous machines, including JET, TFTR, DⅢ-D, EAST and KSTAR. As �̂� → 0, 

we will have fewer resonant surfaces and ballooning structure can fall apart and 

collapse. Therefore both curvature drive and curvature effects are weakened, leading to 

confinement improvement. 

 

3. Saturation Mechanisms 

Because we are interested in the implications of the relation of the mechanism to the 

scaling and what determines fluxes ⟨�̃�𝑟�̃�⟩ and intensity ⟨�̃�𝑟
2⟩, we care about saturation 

mechanisms.  

In reality, tokamak is a strongly driven system with a source and a sink. We can divide 

a tokamak into three regions: heat deposition region, confinement region and boundary, 

as shown in Fig 7. There are two names of the game in confinement region. One of the 

names is what the gradient in the confinement region is, and another name is how high 

the edge temperature is, which is a key point of H-mode. There should be no surprise, 

because gradient and edge temperature are just the slope and the intercept of the profile. 

This configuration is similar to a fixed flux convection problem, i.e., we can control the 

heating power and let plasma tells us what the temperature is. 

Fig 7 Tokamak: a driven system 
Sometimes people quote mixing length theory (MLT) as a saturation. But this is totally 

wrong. Mixing length limit is the limit at which the non-linear terms become roughly 



comparable to the linear terms, i.e.,  

�̃� ⋅ ∇�̃�~−�̃�𝑟
𝜕⟨𝑛⟩

𝜕𝑟
(3 − 1) 

So what MLT really tells us is we are entering the non-linear regime. 

By figuring out where the energy goes, we can coarsely classify different saturation 

mechanisms into three groups. 

 

3.1. Classification of saturation mechanisms 

 

1) Eliminating free energy or turning off coupling to free energy 

Just like the engine will stop when the petrol is used up, instability will stop growing 

when free energy is used up. One typical example is the formation of plateau in one-

dimensional quasi-linear theory, i.e., the bump-on-tail problem. Considering the wave-

particle interaction, if there is a bump on the tail of particles’ distribution function, then 

the wave can grow by gaining energy from particles. However, as particles gradually 

lose energy, the bump will be flattened, which means the wave can no longer extract 

free energy from particles (see Fig 8). Another example is shearing. Shears, such as 

𝑬 × 𝑩 shear, can reduce the efficiency of extracting free energy from the system. In 

energetic particle business, nonlinear frequency shifts may have similar effects. All 

these examples have the same property that free energy is removed.  

2) Coupling to dissipation 

One typical example of this kind of saturation is 3D turbulence. If we put energy at 

large scales by stirring the fluid, then the energy will cascade down to very small scales 

and finally be dissipated into heat. In this case, the mechanical energy of the fluid is 

converted to the thermal energy of the fluid. To be specific, assume 𝜖, the rate of energy 

transfer between different scales, is proportional to 𝑣2(𝑙)/𝜏~𝑣3(𝑙)/𝑙, and dissipation 

rate at the micro scale is proportional to 𝜈𝑣2(𝑙𝑑)/𝑙𝑑
2, then to balance the energy, we 

must have 

𝑣(𝑙)~𝜖1/3𝑙1/3

𝑙𝑑~
𝜈
𝜖1/4

. (3 − 2) 

Here the physics is coupling to damping by nonlinear transfer. This is the prototype of 

all the saturations by non-linear transfer, including mode-mode coupling, nonlinear 

wave-particle interaction, Compton Scattering, etc. They share the same idea, but they 

have different kinds of damping.  

By the way, we need to realize that weakly damped degree of freedom is most effective 

at absorbing energy. That’s because heavily damped modes are difficult to excite and 

Fig 8 the formation of plateau in distribution function 



couple to. For example, in K41, scales at which 𝑘 ≳ 𝑘𝑑 are sinks, not scales at which 

𝑘 ≫ 𝑘𝑑. 

What about inverse cascade? In two-dimensional cases, we have a tendency of the 

energy to go the other way. In other words, we have some excitations at small scales (at 

which 𝑘𝜌 ≲ 1), and ultimately, these excitations are locally transferred to large scales. 

But what is the fate of the energy? For inverse cascade, we need to consider scale 

independent damping because things like 𝐷𝑘2 and 𝜈𝑘2 become small at large scales. 

One potential candidate is drag. In the story of zonal flow, there is some friction of the 

flow over trapped particles, resulting in some damping like 𝜇~𝜖𝜈𝑖,𝑖. When the damping 

is weak, energy will accumulate at large scales, and then give us a shear flow. This 

large-scale shear flow will back react on the inverse cascade. Above discussion is 

limited in 𝑘 -space. But energy can also be lost at the boundary. Both turbulence 

spreading and avalanching can redistribute energy in space and often lose it at the 

boundary. Therefore, in addition to 𝑘-space coupling, spatial coupling matters in this 

type of saturation mechanisms, too. 

3) Coupling to “Harmless” degree of freedom 

This case specifically refers to zonal mode. To be clear, “damped” and “harmless” are 

not mutually exclusive. Damped means perturbation decays, and “harmless” means the 

perturbation is converted to scales which don’t degrade confinement. In MFT, a 

“harmless” mode is a mode with 𝑚, 𝑛 ≡ 0, which is precisely zonal mode. In zonal 

mode, �̃�𝑟 and �̃�𝑟 are 0 so there is no transport. Of course the dissipation of harmless 

degrees of freedom ultimately disposes of energy. By dumping energy into modes with 

the proper symmetry, the system can saturate itself. 

So in my opinion, system can be saturated by two main mechanisms. First is that the 

instability can no longer gain free energy, no matter that’s because free energy is used 

up or we turn off the coupling of the instability to free energy. Second can be 

summarized as transferring the energy of the perturbation to other scales or places. 

Zonal mode is a more special mechanism because it owns special symmetry so that it 

is harmless. 

 

3.2. Zonal modes 

 

3.2.1. Basic properties of zonal modes 

Zonal modes are modes of thermodynamic variables with poloidal and toroidal 

symmetry, including potential 𝜙(𝑟) , density 𝑛(𝑟) , temperature 𝑇(𝑟) , etc. These 

thermodynamic variables are important in different cases, as shown in Table 1. 

Potential 

It is important 

everywhere, as it 

produces an 𝑬 × 𝑩 flow  

Corrugation 

Zonal density 

CTEM (BTW, it appears 

in Hasegawa-Wakatani, 

but it’s weaker) 

Electron temperature CTEM 

Ion temperature ITG 
table 1 Zonal modes 

By generating zonal perturbations, the structure of the distribution function is changed. 

The reason why zonal modes are important is that zonal mode coupling exploits all 

three saturation channels introduced in Sec 3.1. First, zonal flow can couple to harmless 

D-O-F because its poloidal symmetry. Second, zonal modes are weakly damped, so 

they are coupling to dissipation. Third, zonal modes can remove the coupling to free 



energy. Specifically, zonal corrugation can add modulations to profile. As shown in Fig 

7, if we impose wiggle on the density profile, we can have a staircase. At flat spots of 

the staircase, perturbations cannot grow because of the lack of free energy. At steep 

spots, shear flow is spatially co-located with this steepening, so nothing is going to 

grow there either. 

In addition to the above reason, zonal modes have other interesting features. Zonal 

modes are modes of minimal inertia, which means they are easier to excite. Remember 

that for zonal modes, we have 𝜕𝑡(𝑘⊥𝜌𝑠
2)𝜙 = 𝐷𝑟𝑖𝑣𝑒  while for drift waves it is 

𝜕𝑡(1 + 𝑘⊥
2𝜌𝑠

2)𝜙 = 𝐷𝑟𝑖𝑣𝑒. For the same drive, zonal modes will have larger 𝜙 because 

of smaller inertia. And zonal modes are modes of minimal transport, so they don’t 

degrade confinement. Last but not least, zonal modes are modes of minimal dissipation, 

which make them easily excited. Therefore, zonal modes are natural repositories for 

free energy released by micro-instabilities. 

Zonal flow can be generated by inhomogeneous PV mixing (i.e., potential vorticity flux) 

and one direction of symmetry. Recall in lecture 7, the equation for zonal flow is 

𝜕𝑡⟨∇𝑟
2𝜙⟩ + 𝜕𝑟⟨�̃�𝑟∇⊥

2 �̃�⟩ = 𝜇∇𝑟
2⟨∇𝑟

2𝜙⟩. (3 − 3) 

Since we have symmetry in 𝑦 direction, we have 

⟨�̃�𝑟∇⊥
2 �̃�⟩ = ⟨𝜕𝑥(𝜕𝑦�̃�𝜕𝑥�̃�)⟩ − ⟨𝜕𝑦,𝑥�̃�𝜕𝑥�̃�⟩⏟      

𝑜𝑑𝑑 𝑖𝑛 𝑘𝑦,=0

= 𝜕𝑥⟨𝜕𝑦�̃�𝜕𝑥�̃�⟩ = 𝜕𝑟⟨�̃�𝑟�̃�𝜃⟩. (3 − 4)
 

The Reynolds force in Eq (3-4) can drive zonal flow.  

For zonal flow, 𝑘𝜃 = 0 . But why is zonal flow more interesting than other low-𝑘𝜃 

modes? Of course low-𝑘𝜃 modes can provide strong shear, but they can also trigger 

radial transport, too. Therefore, they involve a trade-off between shearing and enhanced 

transport while zonal flow is absolutely harmless. What’s more, their inertia is larger 

than zonal flow’s and thus harder to excite. 

It is very useful to trace the energy flow when things get involved with zonal flow. As 

shown in Fig 8, free energy is initially stored in electron distribution function, i.e., 

1/𝐿𝑛 and 1/𝐿𝑝. These can make instabilities and thus make waves. The beats of waves 

produce stresses and flows. N.B., waves are on scales of 𝑘 while stresses and flows 

Fig 10 formation of staircase in density profile Fig 9 energy flow in EDW or CTEM 



are on the envelop scale. Then by the process of transport or modulation, we can obtain 

zonal modes. Some of zonal modes’ energy goes to heat dissipation while the energy 

sitting in the zonal flow goes back to the distribution function via modulations of 

thermodynamic quantities.  

 

3.2.2. Modulational instability: a feedback loop 

The energy density for electron drift wave or collisionless trapped electron mode is 

𝜖 = ∫𝑑3𝑥𝜌𝑐𝑠
2 [(

�̃�

𝑛
)
2

+ 𝜌𝑠
2 (∇⊥

|𝑒|�̂�

𝑇
)

2

] . (3 − 5) 

The evolution of 𝜖 is 

𝜕𝑡𝜖 = −∫𝑑
3𝑥[⟨�̃�𝑟�̃�⟩𝜕𝑟⟨𝛿𝑛⟩] − ∫𝑑

3𝑥⟨𝑣𝐸⟩
′⟨�̃�𝑟𝐸�̃�𝑦𝐸⟩ − ∫𝑑

3𝑥⟨�̃�𝜕𝑡ℎ⟩ + ⋯ . (3 − 6) 

The first term on the right-hand side is the coupling of waves to zonal density, and the 

second term is Reynolds power, corresponding to the coupling to zonal flow. The third 

term on the RHS is the drive from non-adiabatic electron distribution. 

But how do we calculate the Reynolds power? Since �̃�𝑟𝐸  and �̃�𝑦𝐸  are just 𝑬 × 𝑩 

drift velocities, the relation between ⟨�̃�𝑟𝐸�̃�𝑦𝐸⟩ and ⟨𝑘𝑟𝑘𝜃⟩ is 

⟨�̃�𝑟𝐸�̃�𝑦𝐸⟩ = ⟨
𝑐2

𝐵0
2 �̃�𝜃�̃�𝑟⟩ = −

𝑐2

𝐵0
2∑⟨𝑘𝑟𝑘𝜃⟩|�̃�𝒌|

2

𝒌

(3 − 6) 

To make the correlation ⟨𝑘𝑟𝑘𝜃⟩  non-trivial, we need a radially propagating wave, 

because 𝑘𝑟 ≠ 0. Here, the velocity shear tends to align 𝑘𝑟, 𝑘𝜃. Recall that in shearing 

coordinate, we have 

𝑑𝒌

𝑑𝑡
= −

𝜕

𝜕𝒓
(𝜔⏟
=0

+ 𝒌 ⋅ 𝒗) , (3 − 7) 

which further gives us 
𝑑𝑘𝑟
𝑑𝑡

= 𝑘𝑟
(0) − 𝑘𝜃⟨𝑣𝐸⟩

′𝑡. (3 − 8) 

With 𝑡 ≲ 𝜏𝑐, 
⟨𝑘𝑟𝑘𝜃⟩ = ⟨𝑘𝑟

0𝑘𝜃⟩ − 𝑘𝜃
2⟨𝑣𝐸⟩

′𝜏𝑐. (3 − 9) 
The physics behind Eq (3-8) is eddy tilting (see Fig 11). Here comes a feedback loop: 

if we induce a little bit of shear that tilts the eddies, we can obtain a non-trivial ⟨𝑘𝑟𝑘𝜃⟩ 
according to Eq (3-8). Then zonal flow will be driven by the resulting Reynolds force 

and tilt eddies further. This is in essence what modulational instability means. 

 

3.2.3. Wave kinetics: a systematic approach 

We have already got the physical picture of the interaction between waves and zonal 

flow in Sec 3.2.2. In this section, we want to calculate in detail the response of the wave 

population to shear under the framework of wave kinetics.  

We start this business by exploiting adiabatic invariance. Adiabatic invariants are 

Fig 11 shearing of eddies 



approximately conserved quantity due to time scale separation. In this problem, the 

frequency of drift wave 𝜔𝐷𝑊 is much higher than the frequency of zonal modes Ω𝑍𝐹, 

which is nearly equal to 0. Then the action density, which is defined as 

𝑁 = 𝜖/𝜔 (3 − 10) 
where 𝜖  is the energy density and 𝜔  is the frequency. If 𝜖  undergoes a slow 

modulation due to the slow growth of zonal flow, then the action density should be 

conserved. 

Here the action density 𝑁 is a distribution function of wave vector, position, and time, 

i.e., 𝑁 = 𝑁(𝒌, 𝒙, 𝑡) , where 𝒙  and 𝒌  are Hamiltonian variables. Wave vector 𝒌 

specifies the direction or momentum of the wave, and the position 𝒙 describes the 

wave packet position. The physical meaning of 𝑁  is the population of waves. 

Remember in quantum mechanics, we have 𝐸 = (𝑛 + 1/2)ℏ𝜔 . Here the action 

density 𝑁 is exactly the same thing as the quantum number 𝑛. Therefore, there is an 

analogy between waves and particles. Just as particles satisfy Vlasov equation, waves 

satisfy 
𝑑𝑁

𝑑𝑡
=
𝜕

𝜕𝑡
𝑁 + 𝒗𝑔𝑟 ⋅ ∇𝑁 +

𝑑𝒌

𝑑𝑡
⋅ ∇𝒌𝑁 = 0. (3 − 11) 

Just as the characteristic equations of Vlasov equation, the characteristic equations of 

wave kinetic equation are 
𝑑𝒙
𝑑𝑡
= 𝒗𝑔𝑟 + 𝒗

𝑑𝒌
𝑑𝑡
= −

𝜕
𝜕𝒙
(𝜔 + 𝒌 ⋅ 𝒗)

. (3 − 12) 

Combining equation (3-11) and (3-12), we have 
𝜕𝑁

𝜕𝑡
+ (𝒗𝑔𝑟 + 𝒗) ⋅ ∇𝑁 −

𝜕

𝜕𝒙
(𝜔 + 𝒌 ⋅ 𝒗) ⋅

𝜕

𝜕𝒌
𝑁 = 0. (3 − 13) 

Now we want to calculate the response of 𝑁 to the shear. So we set 𝑁 = ⟨𝑁(𝒌)⟩ + �̃� 

and treat �̃�𝑬  as a seed. In addition, we’d like to include interactions that don’t 

conserved the action. In practice, we include them in an approximate form as a 

collisional damping on the right-hand side of Eq (3-11). Then we have 
𝑑𝑁

𝑑𝑡
= 𝑐(𝑁) ⋍ 𝛾𝑁 − Δ𝜔𝑁2. (3 − 14) 

Just like usual game of quasi-linear theory, we plug 𝑁 = ⟨𝑁(𝒌)⟩ + �̃� into Eq (3-14) 

and do the average, then we obtain 
𝜕⟨𝑁⟩
𝜕𝑡

=
𝜕
𝜕𝑘𝑟

⟨𝑘𝜃�̃�𝐸
′ �̃�⟩ + ⟨𝑐(𝑁)⟩

𝜕�̃�
𝜕𝑡
+ 𝒗𝑔𝑟 ⋅ ∇�̃� + |𝛾|�̃� = 𝑘𝜃�̃�𝐸

′ 𝜕
𝜕𝑘𝑟

⟨𝑁⟩
. (3 − 15) 

So 

�̃�𝑞𝑟,Ω =
𝑖𝑘𝜃𝑞𝑟�̃�𝐸𝑞

−𝑖(Ω − 𝑞𝑟𝑣𝑔𝑟 + 𝑖|𝛾|)

𝜕⟨𝑁⟩

𝜕𝑘𝑟
, (3 − 16) 

where 𝑞𝑟 is the wave vector of perturbations in radial direction. 

Substituting Eq (3-16) into Eq (3-15), we get 
𝜕⟨𝑁⟩

𝜕𝑡
=

𝜕

𝜕𝑘𝑟
𝐷𝑘

𝜕

𝜕𝑘𝑟
⟨𝑁⟩ + ⟨𝑐(𝑁)⟩, (3 − 17) 

where 

𝐷𝑘 = 𝑘𝜃
2∑

𝑞𝑟
2 |�̃�𝐸𝑞|

2
|𝛾|2

(Ω − 𝑞𝑟𝑣𝑔𝑟)
2
+ |𝛾|2𝑞𝑟

. (3 − 18) 



The first term on the RHS of Eq (3-16) looks like a diffusion in 𝑘𝑟 due to “random 

shearing”. As 𝑑𝑘𝑟/𝑑𝑡 = −𝜕𝑥(𝑘𝜃�̃�𝐸
′ ) is in the form of Langevin equation, we expect 

⟨𝑘𝑟
2⟩ will increase like a random walk. Here the irreversibility comes from ray chaos 

(i.e., entropy increases). Obviously, we can also approach via Envelope theory, i.e., 

Langmuir turbulence. The envelope equations can produce solitons in 1-dimension and 

collapse in 3-dimension. Both approaches can lead us to modulational instability by 

separation of time. 

Based on the relation between ⟨𝑁⟩ and ⟨𝜖⟩, we have 
𝜕⟨𝜖⟩

𝜕𝑡
= ∫𝑑3𝑘𝜔𝒌

𝜕

𝜕𝑘𝑟
𝐷𝒌

𝜕

𝜕𝑘𝑟
⟨𝑁⟩ + ∫𝑑3𝑘𝜔𝒌 ⟨𝑐(𝑁)⟩. (3 − 19) 

By integration by parts, we can rewrite Eq (3-19) as 
𝜕⟨𝜖⟩

𝜕𝑡
= −∫𝑑3𝑘

𝜕𝜔𝒌
𝜕𝑘𝑟

𝐷𝒌
𝜕

𝜕𝑘𝑟
⟨𝑁⟩ + ∫𝑑3𝑘𝜔𝒌 ⟨𝑐(𝑁)⟩ + 𝑆. 𝑇. . (3 − 20) 

To determine the sign of 𝜕𝑡⟨𝜖⟩, we need to determine the signs of 𝜕𝑘𝑟𝜔 and 𝜕𝑘𝑟⟨𝑁⟩. 

For EDW, the group velocity is 
𝜕𝜔

𝜕𝑘𝑟
= −

2𝑘𝑟𝑘𝜃𝑣∗
(1 + 𝑘⊥

2𝜌𝑠2)2
. (3 − 21) 

And the action is 

𝑁 =
𝜖𝒌
𝜔𝒌

=
(1 + 𝑘⊥

2𝜌𝑠
2)2

𝑘𝜃𝑣∗
|𝜙𝒌|

2 (3 − 22) 

So 
𝜕⟨𝜖⟩

𝜕𝑡
= ∫𝑑3𝑘

2𝑘𝑟
(1 + 𝑘⊥

2𝜌𝑠2)2
𝜕

𝜕𝑘𝑟
|𝑞𝒌|

2  + ∫𝑑3𝑘𝜔𝒌 ⟨𝑐(𝑁)⟩ (3 − 23) 

where |𝑞𝒌|
2 = (1 + 𝑘⊥

2𝜌𝑠
2)2|𝜙𝒌|

2. 

Therefore, 𝜕𝑡⟨𝜖⟩ < 0 as 𝜕𝑘𝑟|𝑞𝒌|
2 < 0 is always the case. So the energy flows from 

waves to zonal modes! To show the energy is conserved, we need another equation for 

zonal flow, which together with the wave kinetic equation forms the Predator-Prey 

model. 


